人源化小鼠模型在药物代谢和毒性研究中的应用

武之涛,任进,潘国宇*

中国药学杂志 ›› 2013, Vol. 48 ›› Issue (14) : 1137-1142.

PDF(1089 KB)
PDF(1089 KB)
中国药学杂志 ›› 2013, Vol. 48 ›› Issue (14) : 1137-1142. DOI: 10.11669/cpj.2013.14.001
综 述

人源化小鼠模型在药物代谢和毒性研究中的应用

  • 武之涛,任进,潘国宇*
作者信息 +

Application of Humanized Mice in Drug Metabolism and Toxicity

  • WU Zhi-tao,REN jin,PAN Guo-yu*
Author information +
文章历史 +

摘要

目的 阐述人源化小鼠模型在药物代谢和毒性研究中的应用。方法 通过整理国外相关科技文献,对人源化小鼠模型的发展历史和在药物代谢酶与药物毒性研究上的应用进行回顾、总结,为早期药物的研发提供支持。结果与结论 人源化小鼠模型可以克服种属差异,在国外已被逐渐用于药物代谢研究和药物安全性评价。转基因小鼠可以专一的用于研究某个药物代谢酶对药物的代谢。嵌合小鼠可以更系统和全面地反映药物在体内的处置,在药物的发现和开发中具有较大应用潜能。

Abstract

ObjectiveTo discuss the application of humanized mice model in drug metabolism and toxicity. Methods By sorting foreign scientific literature, the history of the development of humanized mice model and its application in drug metabolizing enzymes and toxicity studies were reviewed and summarized to provide support for early drug development. Results AND Conclusion The humanized mice model could reduce interspecies differences and has been increasingly used in drug metabolism and safety evaluation in foreign countries. Transgenic mice can be applied to studying the metabolism of drugs metabolized by certain enzyme. In the chimeric mice body, the disposal of drugs could be more systematic and comprehensive mirrored, predicting this model has enormous potential in drug discovery and development.

关键词

人源化小鼠 / 细胞色素P450 / 药物代谢 / 诱导 / 抑制 / 毒性

Key words

humanized mice / CYP450 / drug metabolism / induction / inhibition / toxicity

引用本文

导出引用
武之涛,任进,潘国宇*. 人源化小鼠模型在药物代谢和毒性研究中的应用[J]. 中国药学杂志, 2013, 48(14): 1137-1142 https://doi.org/10.11669/cpj.2013.14.001
WU Zhi-tao,REN jin,PAN Guo-yu*. Application of Humanized Mice in Drug Metabolism and Toxicity[J]. Chinese Pharmaceutical Journal, 2013, 48(14): 1137-1142 https://doi.org/10.11669/cpj.2013.14.001
中图分类号: R965   

参考文献

[1] LESLIE E M, WATKINS P B, KIM R B, et al. Differential inhibition of rat and human Na+-dependent taurocholate cotransporting polypeptide(NTCP/SLC10A1) by bosentan: A mechanism for species differences in hepatotoxicity. J Pharmacol Exp Ther, 2007, 321(3) : 1170-1178.

[2] STROM S C, PISAROV L A, DORKO K, et al. Use of human hepatocytes to study P450 gene induction. Methods Enzymol, 1996, 272 : 388-401.

[3] GóMEZ-LECHN M J, DONATO M T, CASTELL J V, et al. Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr Drug Metab, 2003, 4(4) : 292-312.

[4] HEWITT N J, LECHN M J, HOUSTON J B, et al. Primary hepatocytes: Current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev, 2007, 39(1) : 159-234.

[5] RODRIGUES A D, RUSHMORE T H. Cytochrome P450 pharmacogenetics in drug development: In vitro studies and clinical consequences. Curr Drug Metab, 2002, 3(3) : 289-309.

[6] RICHERT L, LIGUORI M J, ABADIE C, et al. Gene expression in human hepatocytes in suspension after isolation is similar to the liver of origin, is not affected by hepatocyte cold storage and cryopreservation, but is strongly changed after hepatocyte plating. Drug Metab Dispos, 2006, 34(5) : 870-879.

[7] SKETT P. Problems in using isolated and cultured hepatocytes for xenobiotic metabolism/metabolism-based toxicity testing—Solutions. Toxicology in Vitro, 1994, 8(3) : 491-504.

[8] INOUE T, NITTA K, SUGIHARA K, et al. CYP2C9-catalyzed metabolism of S-warfarin to 7-hydroxywarfarin in vivo and in vitro in chimeric mice with humanized liver. Drug Metab Dispos, 2008, 36(12) : 2429-2433.

[9] SANOH S, HORIGUCHI A, SUGIHARA K, et al. Prediction of in vivo hepatic clearance and half-life of drug candidates in human using chimeric mice with humanized liver. Drug Metab Dispos, 2012, 40(2) : 322-328.

JIANG X L, GONZALEZ F J, YU A M. Drug-metabolizing enzyme, transporter, and nuclear receptor genetically modified mouse models. Drug Metab Rev, 2011, 43(1) : 27-40.

TATENO C, YOSHIZANE Y, SAITO N, et al. Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am J Pathol, 2004, 165(3) : 901-912.

AZUMA H, PAULK N, RANADE A, et al. Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice. Nat Biotechnol, 2007, 25(8) : 903-910.

HE Z, ZHANG H, ZHANG X, et al. Liver xeno-repopulation with human hepatocytes in Fah-/-/Rag2-/-mice after pharmacological immunosuppression. Am J Pathol, 2010, 177(3) : 1311-1319.

SHEN H W, JIANG X L, GONZALEZ F J, et al. Humanized transgenic mouse models for drug metabolism and pharmacokinetic research. Curr Drug Metab, 2011, 12(10) : 997-1006.

ZHANG Q Y, GU J, SU T, et al. Generation and characterization of a transgenic mouse model with hepatic expression of human CYP2A6. Biochem Biophys Res Commun, 2005, 338(1) : 318-324.

DRAGIN N, UNO S, WANG B, et al. Generation of “humanized” hCYP1A1_1A2_Cyp1a1/1a2(-/-) mouse line. Biochem Biophys Res Commun, 2007, 359(3) : 635-642.

SANDGREN E P, PALMITER R D, HECKEL J L, et al. Complete hepatic regeneration after somatic deletion of an albumin-plasminogen activator transgene. Cell, 1991, 66(22) : 245-256.

DANDRI M, BURDA M R, TRK E, et al. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology, 2001, 33(4) : 981-988.

BOSMA G C, CUSTER R P, BOSMA M J. A severe combined immunodeficiency mutation in the mouse. Nature, 1983, 301(5900) : 527-530.

SUEMIZU H, HASEGAWA M, KAWAI K, et al. Establishment of a humanized model of liver using NOD/Shi-scid IL2Rg null mice. Biochem Biophys Res Commun, 2008, 377(1) : 248-252.

MERCER D F, SCHILLER D E, ELLIOTT J F, et al. Hepatitis C virus replication in mice with chimeric human livers. Nat Med, 2001, 7(8) : 927-933.

GRANVIL C P, YU A M, ELIZONDO G, et al. Expression of the human CYP3A4 gene in the small intestine of transgenic mice: In vitro metabolism and pharmacokinetics of midazolam. Drug Metab Dispos, 2003, 31(5) : 548-555.

YU A M, FUKAMACHI K, KRAUSSZ K W, et al. Potential role for human cytochrome P450 3A4 in estradiol homeostasis. Endocrinology, 2005, 146(7) : 2911-2919.

CHEUNG C, YU A M, CHEN C S, et al. Growth hormone determines sexual dimorphism of hepatic cytochrome P450 3A4 expression in transgenic mice. J Pharmacol Exp Ther, 2006, 316(3) : 1328-1334.

VAN HERWAARDEN A E, WAGENAAR E, VAN DER KRUIJSSEN C M, et al. Knockout of cytochrome P450 3A yields new mouse models for understanding xenobiotic metabolism. J Clin Invest, 2007, 117(11) : 3583-3592.

KATOH M, MATSUI T, NAKAJIMA M, et al. Expression of human cytochromes P450 in chimeric mice with humanized liver. Drug Metab Dispos, 2004, 32(12) : 1402-1410.

KAMIMURA H, NAKADA N, SUZUKI K, et al. Assessment of chimeric mice with humanized liver as a tool for predicting circulating human metabolites. Drug Metab Pharmacokinet, 2010, 25(3) : 223-235.

DERKENNE S, CURRAN C P, SHERTZER H G, et al. Theophylline pharmacokinetics: Comparison of Cyp1a1(-/-)and Cyp1a2(-/-) knockout mice, humanized hCYP1A1_1A2 knock-in mice lacking either the mouse Cyp1a1 or Cyp1a2 gene, and Cyp1(+/+)wild-type mice. Pharmacogenet Genomics, 2005, 15(7) : 503-511.

NISHIMURA M, YOSHITSUGU H, YOKOI T, et al. Evaluation of mRNA expression of human drug-metabolizing enzymes and transporters in chimeric mouse with humanized liver. Xenobiotica, 2005, 35(9) : 877-890.

NAKAJIMA M, KUROIWA Y, YOKOI T. Interindividual differences in nicotine metabolism and genetic polymorphisms of human CYP2A6. Drug Metab Rev, 2002, 34(4) : 865-877.

LFGREN S, BALDWIN R M, CARLERS M, et al. Regulation of human CYP2C18 and CYP2C19 in transgenic mice: Influence of castration, testosterone, and growth hormone. Drug Metab Dispos, 2009, 37(7): 1505-1512.

ZANGER U M, RAIMUNDO S, EICHELBAUM M. Cytochrome P450 2D6: Overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol, 2004, 369(1) : 23-37.

YU A M, IDLE J R, GONZALEZ F J. Polymorphic cytochrome P450 2D6: Humanized mouse model and endogenous substrates. Drug Metab Rev, 2004, 36(2) : 243-277.

MASUBUCHI Y, IWASA T, HOSOKAWA S, et al. Selective deficiency of debrisoquine 4-hydroxylase activity in mouse liver microsomes. J Pharmacol Exp Ther, 1997, 282(3) : 1435-1441.

CORCHERO J, GRANVIL C P, AKIYAMA T E, et al. The CYP2D6 humanized mouse: Effect of the human CYP2D6 transgene and HNF4alpha on the disposition of debrisoquine in the mouse. Mol Pharmacol, 2001, 60(6) : 1260-1267.

KATOH M, SAWADA T, SOENO Y, et al. In vivo drug metabolism model for human cytochrome P450 enzyme using chimeric mice with humanized liver. J Pharm Sci, 2007, 96(2) : 428-437.

BJORNSSON T D, CALLAGHAN J T, EINOLF H J, et al. The conduct of in vitro and in vivo drug-drug interaction studies: A Pharmaceutical Research and Manufacturers of America(PhRMA) perspective. Drug Metabolism and Disposition, 2003, 31(7) : 815-832.

CHEN S, BEATON D, NGUYEN N, et al. Tissue specific, inducible, and hormonal control of the human UDP-glucuronosyltransferase-1(UGT1) locus. J Biol Chem, 2005, 280(45) : 37547-37557.

CAI H, NGUYEN N, PETERKIN V, et al. A humanized UGT1 mouse model expressing the UGT1A1*28 allele for assessing drug clearance by UGT1A1 dependent glucuronidation. Drug Metab Dispos, 2010, 38(5) : 879-886.

KATOH M, MATSUI T, OKUMURA H, et al. Expression of human phase II enzymes in chimeric mice with humanized liver. Drug Metab Dispos, 2005, 33(9) : 1333-1340.

MA X, SHAH Y, CHEUNG C, et al. The pregnane X receptor gene-humanized mouse: A model for investigating drug-drug interactions mediated by cytochromes P450 3A. Drug Metab Dispos, 2007, 35(2) : 194-200.

KATOH M, MATSUI T, NAKAJIMA M, et al. In vivo induction of human cytochrome p450 enzymes expressed in chimeric mice with humanized liver. Drug Metab Dispos, 2005, 33(6) : 754-763.

KATOH M, WATANABE M, TABATA T, et al. In vivo induction of human cytochrome P450 3A4 by rifabutin in chimeric mice with humanized liver. Xenobiotica, 2005, 35(9) : 863-875.

NISHIMURA M, YOKOI T, TATENO C, et al. Induction of human CYP1A2 and CYP3A4 in primary culture of hepatocytes from chimeric mice with humanized liver. Drug Metab Pharmacokinet, 2005, 20(2) : 121-126.

CHEUNG C, MA X, KRAUSZ K W, et al. Differential metabolism of 2-amino-1-methyl-6-phenylimidazopyridine(PhIP) in mice humanized for CYP1A1 and CYP1A2. Chem Res Toxicol, 2005, 18(9) : 1471-1478.

KAKUNI M, MORITA M, MATSUO K, et al. Chimeric mice with a humanized liver as an animal model of troglitazone-induced liver injury. Toxicol Lett, 2012, 214(1): 9-18.

YAMAMOTO T, TOMIZAWA K, FUJIKAWA M, et al. Evaluation of human hepatocyte chimeric mice as a model for toxicological investigation using panomic approaches—effect of acetaminophen on the expression proflles of proteins and endogenous metabolites in liver, plasma and urine. J Toxicol Sci, 2007, 32(3) : 205-215.

SATO Y, YAMADA H, IWASAKI K, et al. Human hepatocytes can repopulate mouse liver: Histopathology of the liver in human hepatocyte-transplanted chimeric mice and toxicologic responses to acetaminophen. Toxicol Pathol, 2008, 36(4) : 581-591.

基金

基金项目:国家自然科学基金资助项目(81173116)

PDF(1089 KB)

Accesses

Citation

Detail

段落导航
相关文章

/